Related Papers in Other Top Conferences (2021)
SIGMOD 2021
anomaly detection
- Multiple Dynamic Outlier-Detection from a Data Stream by Exploiting Duality of Data and Queries - Susik Yoon (KAIST); Yooju Shin (KAIST); Jae-Gil Lee (KAIST)$^{\star}$; Byung Suk Lee (University of Vermont) 
- GPU-Accelerated Graph Label Propagation for Real-Time Fraud Detection - chang ye (Singapore Management University)$^{\star}$; Yuchen Li (Singapore Management University); Bingsheng He (National University of Singapore); Zhao Li (Alibaba Group); Jianling Sun (Zhejiang University) 
- Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach - Daichi Amagata (Osaka University)$^{\star}$; Makoto Onizuka (Osaka University); Takahiro Hara (Osaka University, Japan) 
- RobustPeriod: Robust Time-Frequency Mining for Multiple Periodicity Detection - Qingsong Wen (Alibaba DAMO Academy)$^{\star}$; Kai He (Alibaba DAMO Academy); Liang Sun (Alibaba Group); Yingying Zhang (Alibaba Group); Min Ke (Alibaba Group); Huan Xu (Alibaba Group) 
- On Saving Outliers for Better Clustering over Noisy DataShaoxu Song (Tsinghua University)$^{\star}$; Fei Gao (Tsinghua University); Ruihong Huang (Tsinghua University); Yihan Wang (Tsinghua University)
causal analysis
- Clonos: Consistent Causal Recovery for Highly-Available Streaming Dataflows
 Pedro Silvestre (TU Delft); Marios Fragkoulis (TU Delft)$^{\star}$; Diomidis Spinellis (TU Delft); Asterios Katsifodimos (TU Delft)
heterogeneous
- EquiTensors: Learning Fair Integrations of Heterogeneous Urban Data - An Yan (University of Washington)$^{\star}$; Bill G Howe (University of Washington) 
- Heterogeneity-Aware Distributed Machine Learning Training via Partial Reduce - Xupeng Miao (Peking University)$^{\star}$; Xiaonan Nie (Peking University); Yingxia Shao (BUPT); Zhi Yang (Peking University); Jiawei Jiang (ETH Zurich); Lingxiao Ma (Peking University); Bin Cui (Peking University) 
NDSS 2021
accept papers: link
- Evading Voltage-Based Intrusion Detection on Automotive CAN - Rohit Bhatia (Purdue University); Vireshwar Kumar (Indian Institute of Technology Delhi); Khaled Serag and Z. Berkay Celik (Purdue University); Mathias Payer (EPFL); Dongyan Xu (Purdue University) 
- Differential Training: A Generic Framework to Reduce Label Noises for Android Malware Detection - Jiayun Xu (School of Information Systems, Singapore Management University, Singapore); Yingjiu Li (University of Oregon); Robert H. Deng (School of Information Systems, Singapore Management University, Singapore) 
ESEC/FSE 2021 (CCF-A)
- Detecting and Localizing Keyboard Accessibility Failures in Web Applications - Paul T. Chiou, Ali S. Alotaibi, William G.J. Halfond 
- Explaining Mispredictions of ML Models - Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, Seohyun Kim, Satish Chandra 
- Feature Trace Recording - Paul Maximilian Bittner, Alexander Schultheiß, Thomas Thüm, Timo Kehrer, Jeffrey M. Young, Lukas Linsbauer 
- Identifying Bad Software Changes via Multimodal Anomaly Detection for Online Service Systems - Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu, Hongyu Xu, Wenchi Zhang, Kaixin Sui, Dan Pei 
ICSE 2021 (CCF-A)
- AUTOTRAINER: An Automatic DNN Training Problem Detection and Repair SystemTechnical Track - Xiaoyu Zhang, Juan Zhai, Shiqing Ma, Chao Shen 
- Interpretation-enabled Software Reuse Detection Based on a Multi-Level Birthmark ModelTechnical Track - Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, Ting Liu 
- Semi-supervised Log-based Anomaly Detection via Probabilistic Label EstimationArtifact ReusableTechnical TrackArtifact Available - Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong, Wenbin Zhang